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Microcanonical Finite-Size Scaling
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In the microcanonical ensemble, suitably defined observables show nonanalytic-
ities and power-law behavior even for finite systems. For these observables,
a microcanonical finite-size scaling theory is established and combined with the
experimentally observed power-law behavior. Scaling laws are obtained which
relate exponents of the finite system and critical exponents of the infinite system
to the system-size dependence of the affiliated microcanonical observables.
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1. INTRODUCTION

Numerical studies of phase transitions are restricted to finite systems. This
automatically leads to a confrontation with the peculiarities of the statisti-
cal physics of finite systems and with the difficulties of an extrapolation to
the thermodynamic limit. Here we are concerned with two of these aspects:

v The equivalence of statistical ensembles, valid for systems in the
thermodynamic limit for a wide class of the physically relevant interaction
potentials, (1) does not hold for finite systems. For example, microcanonical
and canonical quantities differ in general, though both of them converge
towards the corresponding infinite system value with increasing system size.
However, the use of one of the statistical ensembles might be advantageous
if the convergence towards the thermodynamic limit value is faster, or more
expedient, than in the other ensemble.

v Properties of the infinite system have to be deduced from finite
system data, for which finite-size scaling can be the method of choice. As
introduced by Fisher and Barber, (2) finite-size scaling relations are derived

1251

0022-4715�00�0600-1251�18.00�0 � 2000 Plenum Publishing Corporation

1 Institut fu� r Theoretische Physik, Friedrich-Alexander-Universita� t Erlangen-Nu� rnberg,
D-91058 Erlangen, Germany.



for observables of the canonical ensemble, and will therefore be referred to
as canonical finite-size scaling. These relations enable the determination of
critical exponents of the infinite system from the system-size dependence of
finite-system data. In this paper, features of microcanonical observables as
sketched in Section 2 are combined with the method of finite-size scaling,
to lead to an alternative tool for the analysis of finite-system data.

Note: This paper is not about microcanonical simulation techniques. The
way that the data are produced is irrelevant for all that follows. As the
microcanonical and the canonical ensemble are connected via Laplace
transforms, from a suitable set of simulation data, both microcanonical and
canonical observables can be computed. This paper is concerned with such
microcanonical observables and their system size dependence.2

2. MICROCANONICAL DESCRIPTION OF FINITE SYSTEMS

By definition, the microcanonical entropy is the logarithm of the
microcanonical partition function (density of states) 0,

s(=, m, L&1)=L&d ln 0(=, m, L&1) (2.1)

where L is the linear size, d is the spatial dimension of the system, m is the
specific magnetization and = the specific interaction energy. In a microca-
nonical description of finite systems, the zero-field magnetization and the iso-
thermal magnetic susceptibility3 can be defined in terms of the microcanonical
entropy s(=, m, L&1). The zero-field magnetization mh=0 follows from(4, 5)

lim
hz0

[max
m

[s(=, m, L&1)+hm]]=s(=, m, L&1) |m=mh=0(=, L&1) (2.2)

The zero-field isothermal magnetic susceptibility (see ref. 6 for the straight-
forward but somewhat arduous derivation) reads

/T; h=0(=, L&1) :=
�m
�h }T; h=0

(=, L&1)

={_�s
�= _\

�2s
�= �m+

2

<�2s
�=2&

�2s
�m2&

&1

& (=, m, L&1)=m=mh=0(=, L&1)

(2.3)
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2 Reference 3 presents finite-size scaling of microcanonical quantities. The natural variables of
a microcanonical potential of an Ising system are = and m. In that sense the calculations in
ref. 3 are not truly microcanonical.

3 In this paper, results are presented for the zero-field magnetization and the isothermal
magnetic susceptibility. An extension to other observables, e.g., the specific heat, can be done
in a straightforward manner.
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Fig. 1. Microcanonical zero-field magnetizations of finite 3d-Ising systems. As a guide to the
eye, the data points are connected by straight lines.

Here, h is the magnetic field and, for notational convenience, the zero-field
limit is denoted by h=0.

The zero-field magnetization (Fig. 1) and the zero-field magnetic
susceptibility (Fig. 2) are plotted for various system sizes of the 3d-Ising
system with nearest-neighbour interaction and periodic boundary condi-
tions on a cubic lattice.4 The zero-field magnetization shows an instan-
taneous set-in as in the infinite system, and the zero-field susceptibility of
the finite system is not rounded! The finite-system transition interaction
energy, denoted by =TR(L), is determined by the location of certain ``transi-
tion features'' like the peak of the susceptibility, and is obviously dependent
on system-size. In Figs. 3 and 4, magnetizations and susceptibilities are
plotted as functions of the finite-system reduced interaction energy

=~ :=
=&=TR(L)
|=TR(L)|

(2.4)

on a log�log�scale. The plots suggest power-law behavior and therefore the
introduction of finite-system exponents ;=, L and #=, L defined by

mh=0(=, L&1)t |=~ | ;=, L 3(&=~ ) and /T; h=0(=, L&1)t |=~ |&#=, L (2.5)

where 3 is Heavyside's step function.
In Figs. 5 and 6, magnetizations and susceptibilities are plotted as

functions of the finite-system reduced interaction energy again. Data
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4 The data were generated by means of Monte Carlo-simulations. Due to the discreteness of
the Ising system, the derivatives in (2.3) are substituted by ratios of differences.
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Fig. 2. Microcanonical zero-field isothermal magnetic susceptibilities of finite 3d-Ising
systems. For numerical convenience, [(�2s)�(�m2)]&1 is plotted instead of /T; h=0 , as both
quantities show the same microcanonical finite-size scaling behavior and��in the thermo-
dynamic limit��the same critical behavior. Again, as a guide to the eye, the data points are
connected by straight lines.

Fig. 3. Log�log�plot of the microcanonical zero-field magnetizations of finite 3d-Ising
systems versus the finite-system reduced interaction energy =~ . The behavior of mh=0 suggests
power-law behavior and the introduction of a finite-system exponent ;=, L which appears to be
independent of the system-size.
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Fig. 4. Log�log�plot of the microcanonical zero-field isothermal magnetic susceptibilities of
finite 3d-Ising systems versus |=~ |. For numerical convenience, [(�2s)�(�m2)]&1 is plotted
instead of /T; h=0 , as both quantities show the same microcanonical finite-size scaling
behavior and��in the thermodynamic limit��the same critical behavior. The behavior of
[(�2s)�(�m2)]&1 suggests power-law behavior and the introduction of a finite-system exponent
#=, L which appears to be independent of the system-size.

collapse has been achieved by the use of L-dependent scale factors A(L&1)
for mh=0 and B(L&1) for /T; h=0 on the vertical axes. Therefore, it seems
to be evident that the finite-system exponents are independent of the
system-size (i.e., take on the same value \L&1{0), and for the 3d-Ising
system we obtain ;=, Lr0.5 and #=, Lr1 for all L considered. Note that
these values differ from those expected in the thermodynamic limit,
;==;�(1&:)r0.37 and #==#�(1&:)r1.38 (see Section 3 for the defini-
tions of these exponents). At first sight this seems to be alarming. In
Remark (d) of Section 3, however, a proposal will be made how to resolve
this problem. The finite-system exponents ;=, L and #=, L are found to show
approximately mean-field5 values. Regrettably, we cannot give a sound
explanation for this observation. A connection between the mean-field
values and the analyticity properties of the microcanonical entropy is
established in Remark (f ) of Section 3.
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5 Not only for 3d-Ising systems with periodic boundary conditions as investigated in this
paper. The same values have been found for 3d-Ising systems with open boundary conditions
and for 2d-Ising systems with periodic boundary conditions.
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Fig. 5. Scaling plot of the microcanonical zero-field magnetization. Multiplication of mh=0

by suitable scaling factors A(L&1) and plotting the thus obtained results against =~ yields data
collapse. This observation gives rise to the assumption that the finite-system exponent ;=, L

shows no system-size dependence. For convenience, only some of the data points are shown.

Fig. 6. Scaling plot of the microcanonical zero-field isothermal magnetic susceptibility. Mul-
tiplication of [(�2s)�(�m2)]&1 by suitable scaling factors B(L&1) and plotting the thus
obtained results against =~ yields data collapse. This observation gives rise to the assumption
that the finite-system exponent #=, L shows no system-size dependence. Again, for convenience,
only some of the data points are shown.
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In this paper, a microcanonical finite-size scaling theory is developed,
taking into account the following constraints (partly justified above):

(i) consistence with the canonical finite-size scaling theory

(ii) power-law behavior of the finite-system magnetization and
susceptibility

(iii) finite-system exponents which do not depend on the system-size
and which are not necessarily identical to the critical exponents of the
infinite system.

Any case other than power-law behavior will be disregarded in this
paper.

3. MICROCANONICAL FINITE-SIZE SCALING

In the vicinity of a critical point (t, hr0 or =*, mr0), the standard
separation of thermodynamic potentials(7, 8) into a singular part (subscript
sing) which describes the non-analytic behavior of the observables under
investigation, and a regular part (subscript reg) containing all other terms,
can be performed. For the free energy density and the specific entropy this
reads

g(t, h) =gsing(t, h)+greg(t, h) (3.1)

s(=*, m)=ssing(=*, m)+sreg(=*, m) (3.2)

where t :=(T&Tc)�Tc is the reduced temperature, Tc the critical tem-
perature, =*==~ (L&1 � 0)=(=&=c)�|=c | is the reduced interaction energy
and =c the critical interaction energy. It can be shown (see e.g., ref. 9 and
references therein) that in the thermodynamic limit the singular parts of the
various potentials are homogeneous functions. In terms of the free energy
density and the specific entropy, this reads

gsing(t, h)=*&1gsing(*at t, *ah h) (3.3)

and

ssing(=*, m)=*&1ssing(*a= =*, *am m) (3.4)

The critical exponents are implicitly defined by the power laws

ch=0(T )t |t| &:t ch=0(=)t |=*| &:= (3.5)

mh=0(T )t |t| ;t 3(&t) mh=0(=)t |=*| ;= 3(&=*) (3.6)
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/T; h=0(T )t |t| &#t /;; h=0(=)t |=*| &#= (3.7)

mt=0(h)t |h| 1�$h sgn(h) h=*=0(m)t |m|1�$m sgn(m) (3.8)

where the exponents :t , ;t , #t , $h are the ``traditional'' critical exponents
(:, ;, #, $) and sgn denotes the sign function. The critical exponents can be
expressed in terms of the degrees of homogeneity (at , ah) or (a= , am) of
Eqs. (3.3) and (3.4):

:t=
2at&1

at
:==

1&2a=

a=
=

:t

1&:t
(3.9)

;t=
1&ah

at
;==

am

a=
=

;t

1&:t
(3.10)

#t=
2ah&1

at
#==

1&2am

a=
=

#t

1&:t
(3.11)

$h=
ah

1&ah
$m=

am

1&am
=

1
$h

(3.12)

The degrees of homogeneity of (3.3) and (3.4) are connected via the rela-
tions at=1&a= and ah=1&am .

The concept of thermodynamic potentials can be carried over to finite
systems. However, since the equivalence of ensembles is valid only in the
thermodynamic limit, thermodynamic potentials of finite systems have to
be classified as canonical (superscript c) or microcanonical (superscript m)
quantities. Starting point for canonical finite-size scaling (CFSS) is the

CFSS Assumption.

gc
sing(t, h, L&1)=*&1gc

sing(*at t, *ah h, *1�dL&1) (3.13)

i.e., for large but finite systems, gc
sing(t, h, L&1) is a homogeneous func-

tion.(2) Starting point for microcanonical finite-size scaling (MFSS) is the

MFSS Assumption.

sm
sing(=*, m, L&1)=*&1sm

sing(*a= =*, *am m, *1�dL&1) (3.14)

i.e., for large but finite systems, sm
sing(=*, m, L&1) is a homogeneous function.

In the rest of this paper, the consequences of the microcanonical finite-
size scaling assumption are discussed. The structure of this assumption
looks extremely similar to that of the canonical one. Nevertheless, in con-
nection with some additional knowledge about microcanonical observables,
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Fig. 7. Homogeneity relations for the singular parts of the free energy density and the
specific entropy for finite (Eqs. (3.13), (3.14)) as well as infinite systems (Eqs. (3.3), (3.4)). In
the thermodynamic limit, a Legendre transform connects the homogeneity of gsing to the
homogeneity of ssing (see ref. 7), whereas for finite systems it can be shown that the canonical
finite-size scaling (CFSS) assumption is a consequence of the microcanonical finite-size scaling
(MFSS) assumption, i.e., MFSS is consistent with CFSS.(6)

it leads to remarkable consequences��stated in the remarks at the end of
this section��beyond those familiar to canonical finite-size scaling.

We have shown elsewhere(6) that the microcanonical finite-size scaling
assumption (3.14) entails the canonical one (3.13), and thus complies with
the demanded property (i) of Section 2. The interrelation between the
various homogeneity relations and their connection to the finite-size scaling
formalisms is sketched in Fig. 7.

From the microcanonical finite-size scaling assumption (3.14) and
Eqs. (2.2) and (2.3), the microcanonical finite-size scaling relations of the
magnetization and the susceptibility are easily derived:(5)

m*h=0(=*, L&1)=*&am m*h=0(*
a= =*, *1�dL&1) =

*=Ld

L&dam8m*(Lda= =*)

(3.15)

/*T; h=0(=*, L&1)=*1&2am /*T; h=0(*
a= =*, *1�dL&1) =

*=Ld

Ld(1&2am)8/*(Lda==*)

(3.16)

where the 8i are so-called microcanonical finite-size scaling functions
which describe the behavior of the magnetization and the susceptibility of
finite systems in the vicinity of the critical point =c of the infinite system.

Microcanonical finite-size scaling of the transition point: The scaling
behavior of the finite-system transition interaction energy =TR can be
deduced from either one of the functions 8m* or 8/*: Let xTR be the value
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of x for which 8m*(x) or 8/*(x) show a certain ``transition feature.'' Then
the associated finite-system transition interaction energy can be defined
implicitly by

xTR=Lda= =* | ===TR(L)=Lda=
=&=c

|=c | } ===TR(L)

(3.17)

With D :=xTR |=c |, the finite-size scaling relation

=TR(L)==c+DL&da= (3.18)

is obtained.

Remarks. (a) A further quantity s~ msing can be introduced, which is
defined as the singular part of the entropy, written in terms of the finite-
system reduced interaction energy (2.4). Using (3.18), the thus defined
entropy s~ msing can be shown to possess the same degrees of homogeneity
as sm

sing :

s~ msing(=~ , m, L&1)=*&1s~ msing(*
a= =~ , *am m, *1�dL&1) (3.19)

where

s~ msing(=~ , m, L&1) :=sm
sing \=*==~

=TR(L)
=c

+xTRL&da=, m, L&1+ (3.20)

Starting from (3.19), microcanonical finite-size scaling relations can be
derived for the magnetization and the susceptibility. They illustrate the
system-size dependence of the behavior of mh=0 and /T; h=0 in the vicinity
of the transition point =TR(L) of the finite system:

m~ h=0(=~ , L&1)=*&am m~ h=0(*a= =~ , *1�dL&1) =
*=Ld

L&dam 8m~ (Lda= =~ ) (3.21)

/~ T; h=0(=~ , L&1)=*1&2am /~ T; h=0(*a= =~ , *1�dL&1) =
*=Ld

Ld(1&2am) 8/~ (Lda==~ )
(3.22)

(b) Numerical data suggest power-law behavior for both the
magnetization and the susceptibility of finite systems. Then, the micro-
canonical finite-size scaling functions 8m~ and 8/~ have to be power laws,
governed by the respective finite-system exponents which are not deter-
mined by the degrees of homogeneity of sm

sing of (3.14) (and therefore differ
from the infinite-system exponents in general):

8m~ (x) B |x| ;=, L 3(&x) O m~ h=0(=~ , L&1)=Ld(a=;=, L&am) |=~ | ;=, L 3(&=~ ) (3.23)

8/~ (x) B |x| &#=, L O /~ T; h=0(=~ , L&1)=Ld(1&2am&a=#=, L) |=~ | &#=, L (3.24)
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Fig. 8. ``Sudden'' change of an exponent != # [;= , #=] describing the properties of micro-
canonical zero-field quantities in the vicinity of the transition point.

As a consequence, the exponents characterizing the leading behavior of the
microcanonical zero-field quantities in the vicinity of the corresponding
transition points show a ``sudden'' change from their finite-system values to
the respective infinite-system values (Fig. 8). This is discussed in detail in
Remark (d).

(c) The power laws with finite-system exponents (3.23) and (3.24)
suggest the introduction of a further homogeneity relation for the singular
part of the microcanonical entropy:

s~ msing(=~ , m, L&1)=*&1s~ msing(*a=
+
=~ , *am

+
m, L&1) (3.25)

In analogy to the infinite-system case, this is a homogeneity with respect to
two variables only (in contrast to the microcanonical finite size scaling
assumption (3.14))! Then, the finite-system exponents can be expressed in
terms of a+

= , a+
m and these exponents are connected by scaling relations

(which are equivalent to those of the infinite system since they merely
reflect homogeneity properties). For Ising systems in d=2, 3, the validity
of these scaling relations is supported by experimental results.

(d) In Section 2, we found finite-system exponents ;=, L and #=, L

which seem to be independent of system-size, but show values different
from their infinite-system counterparts ;= and #= . Such a behavior is
illustrated in Fig. 8 and appears to be alarming at first sight. For the
purpose of an illustration how such a behavior can emerge from a ``well-
behaving'' entropy function, we consider the following explicit form of s~ msing

as an example:

s~ *m=|=~ | :=+2 [A\+A� \(|=~ | L1�&=):=, L&:=]+|=~ | #= m2[B\+B� \(|=~ | L1�&=)#=, L&#=]

+|m| 1+1�$m [C\+C� \(|m| L ;= �&=)1�$m, L&1�$m] (3.26)
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with

=~ ==*+DL&1�&= (3.27)

where A\ , A� \ , B\ , B� \ , C\ , C� \ are arbitrary amplitudes which may
take on different values below (&) and above (+) the transition interac-
tion energy =TR . It can be shown easily that s~ msing is a homogeneous function
according to (3.14) and (3.19) for arbitrary values of :=, L , #=, L and $m, L .
For finite-system exponents :=, L<:= , #=, L<#= and 1�$m, L<1�$m , the lead-
ing asymptotic behavior of microcanonical observables calculated from
(3.26) is governed by the A� \ -, B� \ - and C� \-terms for all finite L, and
therefore the non-analyticities are subject to the finite-system exponents
:=, L , #=, L and $m, L . The A\-, B\- and C\ -terms are subdominant and
therefore irrelevant for the leading asymptotic behavior. However, con-
sidering s~ msing in the limit L � �, the L-dependent terms vanish:

lim
L&1 � 0

s~ msing=A\ |=~ |:=+2+B\m2 |=~ | #=+C\ |m|1�$m+1 (3.28)

Calculating the asymptotic behavior of the microcanonical observables
from the remaining A\ -, B\ - and C\-terms leads to non-analyticities
governed by the critical exponents of the infinite system := , #= and $m . This
results in a sudden change of the leading asymptotic behavior, and there-
fore in a switching of the exponents from their finite-system to their
infinite-system value. Put briefly, the switching turns out to be a conse-
quence of the fact that limiting procedures do not commute in general.

For simplicity, we disregarded the fact that the entropy is a concave
function in the thermodynamic limit. However, this property could easily
be included in (3.26). Note that this function is not the most general form
of s~ msing��but sufficient as an illustrative example��and leads to relations
between the finite-system exponents. These relations can be avoided when
additional terms in s~ msing are considered.

(e) Note that (3.14) even accounts for the possibility of sm
sing showing

no system-size dependence at all. Nevertheless, this case results in a system
size dependence of the free energy density gc

sing and in canonical finite-size
scaling (see refs. 10 and 6 for details).

(f ) The canonical free energy density gc is analytic for all finite L and
shows nonanalyticities only in the thermodynamic limit. To the best of our
knowledge, no proof exists that the microcanonical specific entropy sm is
analytic for finite systems. Depending on the values of ;=, L and #=, L ,
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Eq. (3.26) implies the possibility for s~ msing to be either an analytic or a non-
analytic function. Due to the particular form of the microcanonical observ-
ables (2.2) and (2.3), even a completely analytic entropy function can result
in non-analyticities of microcanonical observables,6 whether for the infinite
system or for finite system-sizes. Mean-field values are a prominent example
of exponents which are in accord with an analytic entropy function.

4. CONCLUSION

A microcanonical finite-size scaling theory has been developed in
accordance with the demanded properties (i)�(iii) stated in Section 2.
Amazingly, although the scaling laws (3.4) and (3.14) comprise identical
degrees of homogeneity a= and am for the singular parts of the entropy of
the finite and the infinite system respectively, they nevertheless can account
for power law behaviour with different values for the critical exponents of
the infinite system ;= , #= and for the finite-system exponents ;=, L , #=, L ,
where the latter ones are independent of system-size for all finite L. There-
fore, an extrapolation of the finite-system exponents toward the thermo-
dynamic limit is not an appropriate procedure to determine the critical
exponents of the infinite system. However, the microcanonical finite-size
scaling theory can provide another approach to the critical exponents:
Finite-size scaling laws, similar to the canonical ones in structure, have
been found, which relate the system-size dependence of the amplitudes of
microcanonical observables of finite systems to the critical exponents of the
infinite system.
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